The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli
نویسندگان
چکیده
Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress.
منابع مشابه
Acquired Antimicrobial Resistance Genes of Escherichia coli Obtained from Nigeria: In silico Genome Analysis
Background: Antimicrobial resistance is a global problem with enormous public health and economic impact. This study was carried out to get an overview of acquired antimicrobial resistance gene sequences in the genomes of Escherichia coli isolated from different food sources and the environment in Nigeria. Methods: To determine the acquired antimicrobial-resistant genes prevalence, genome asse...
متن کاملAuthor Correction for Côté et al., The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli
Vol. 7, no. 6, doi: 10.1128/mBio.01714-16, 2016. We report herein two referencing oversights in this article. We wish to emphasize here the important work by Ringlstetter (1), who first linked yigM to biotin transport in Escherichia coli. Our article overlooked the discovery of yigM as the coding gene for biotin transporter. Overlooked also was the work of Finkenwirth et al. (2), who created a ...
متن کاملEvaluation of resistance genes in Escherichia coli isolated from toilets in the Islamic Azad University, Mashhad and genome sequencing (tet B, tet A, tet R, OXA 10 and OXA 48) in tetracycline-resistant strains
Aims and Background: E. coli is a normal flora of the human and animal intestine that sometimes causes pathogenesis in the intestine and urinary tract. The aim of this study is to investigate resistance genes in E. coli isolated from toilets in the Islamic Azad University of Mashhad and perform genome sequencing in tetracycline-resistant strains. Methods: This cross-sectional study was perform...
متن کاملDecoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli
The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in ...
متن کاملExtra intestinal pathogenic Escherichia coli from human and avian origin: Detection of the most common virulence-encoding genes
Pathogenic Escherichia coli strains cause a wide range of extra intestinal infections including urinary tract infection in humans and colibacillosis in poultry. They are classified into uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC) with genetic similarities and variations. Their pathogenicity is related to the virulence-encoding genes like sfa</...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016